
CHAPTER 8

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108227162.008
https://www.cambridge.org/core


terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108227162.008
Downloaded from https://www.cambridge.org/core. UCL, Institute of Education, on 21 Jun 2018 at 20:18:10, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108227162.008
https://www.cambridge.org/core


270 Áureo de Paula

(or digraphs), are more adequate for handling relatioships that do not require
reciprocity or for which direction carries a particular meaning, as in a supplier–
client relationship in a production network (e.g., Atalay, Hortacsu, Roberts,
and Syverson, 2011). Further generalizations allow for weighted links, perhaps
representing distances between two individuals or the intensity of a partic-
ular relationship. Such weights can be represented as a mapping from the
space of pairs (unordered or ordered) into the real line. Diebold and Yilmaz
(2015), for example, consider a (directed, weighted) graph obtained from the
forecast-error variance decomposition for a given class of economic variables
of interest. The nodes in this case would be seen as different entities, like stocks
or firms, for example, and the weight of a directed link from node i to node
j gives the proportion of the forecast error variance in variable of interest for
node i (e.g., return or volatility if nodes represent stocks) explained by shocks
to node j .1

A common representation of a graph is through its |Ng| × |Ng| adjacency
or incidence matrix W , where each line represents a different node. The com-
ponents of W mark whether an edge between nodes i and j (or from i to
j in a digraph) is present or not and possibly its weight (in weighted graphs).
The adjacency matrix allows one to translate combinatorial operations into lin-
ear algebraic ones and can be quite useful in several settings. For an adjacency
matrix W to a simple graph (i.e., no self-links and at most one link between any
pair of nodes), the i j element of matrix W k, k ∈ {1, . . . , N − 1}, for instance,
produces the number paths of length k between i and j . Two graphs are said
to be isomorphic if their adjacency matrices can be obtained from each other,
through multiplication by a permutation matrix, for example. This translates
into a relabeling of the vertices in the corresponding graphs.

2.1 Vertex Features

Various measures can then be defined to characterize a particular vertex in the
graph, to relate two or more vertices on a graph, or to represent a global feature
of the graph at hand. (Although some of the notions mentioned below apply to
more general networks, in what follows I focus on simple, unweighted graphs
for ease of exposition.) An important characteristic for a particular vertex i , for
example, is the set of neighbors incident with that vertex in a graph g, denoted
by Ni (g). In an undirected graph g, this set is given by { j : {i, j} ∈ Eg}, and
a similar definition can be given for directed graphs. The cardinality of this set
is known as the “degree” of that node, and one can then talk about the relative
frequency of degrees in a given graph as a whole. (In directed graphs, one can
further distinguish “in-degrees” and “out-degrees” relating to inward and out-
ward edges from and to a given node.) A “dense” graph, for instance, is then

1 They define a few measures based on this network representation to keep track of “connect-
edness” of a particular economic system through time. Their total connectedness measure, for
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one in which nodes display a lot of connections, and a common measure of
density is the average degree divided by |Ng|−1, which is the maximum num-
ber of possible links available to any given node. Given two nodes i and j in
an undirected graph, a sequence of nodes (i ≡ i1, . . . , iK−1, iK ≡ j) defines
a “walk” if every edge {ik, ik+1} ∈ Eg . A “cycle” is a walk where i1 = iK ,
and a tree is a graph without cycles. A “path” is a walk where no vertex is
visited more than once. (One can similarly define paths and walks on directed
graphs.) It is common to define the (geodesic) distance between these two as
the shortest path between those two nodes. A graph is then said to be connected
if the distance between any two vertices is finite (i.e., there is at least one path
between those nodes). A component of a graph is a maximal connected sub-
graph, where a subgraph is defined by a subset of nodes from Ng together
with a subset of edges from Eg between elements in the subset of nodes under
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is in comparison to the remaining nodes in g. Aside from how connected a
given vertex is (degree centrality) or how far on average a vertex is from any
other vertex in the network (closeness centrality), one can also compute the
betweenness centrality, illustrating how crucial a given node is in connect-
ing individuals. Another family of popular centrality measures includes those
based on features of the adjacency matrix aimed at summarizing a node’s cen-
trality in reference to its neighbors centrality (more on this later). The simplest
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approaches a Poisson distribution, and the model is consequently known as
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3 OUTCOMES ON NETWORKS

As pointed out in the introduction, many social and economic outcomes are
mediated by interactions among the entities involved (individuals, households,
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different repercussions: endogenous effects act as conduits for the reverber-
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to suppose that |β| < 1, which together with row-sum normalization, guaran-
tees that I − βW is invertible and a well-defined reduced form exists. Under
this specification and no further restrictions, it can be formally demonstrated
that the structure represented by (α, β, η, γ ) is not point-identified:

Proposition 1 If |β| < 1, ηβ + γ �= 0, Wi j = (N − 1)−1 if i �= j and
Wii = 0, (α, β, η, γ ) is not point-identified.

This result is originally indicated in Manski (1993) and demonstrated, for
instance, as a corollary to Proposition 1 in Bramoullé, Djebbari, and Fortin
(2009). This negative result is also examined, for example, by Kelejian, Prucha,
and Yuzefovich (2006) in an estimation context. The outlook on identification
improves if one imposes further restrictions on the model and/or the available
data. To illustrate this, I focus on the related representation originally consid-
ered in Manski (1993). Instead of specification (1), Manski studies a model
akin to

yi = α + βE(y j |w) + ηxi + γ E(x j |w) + εi , E(ε

i

| xw) =δw,
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dummies as instruments for xi . As pointed out by Manski (1993) and using
my notation, “the ability to infer the presence of social effects depends criti-
cally on the manner in which x varies with w” (p. 535). The non-identification
result in Proposition 1 does not use this variation, whereas these positive identi-
fication results explore the between-group variation of the regressor x , without
which the linear independence condition stated above fails and the variance
V(E(x j |w)) = 0, jeopardizing the results.

Alternative restrictions on the model (2) also allow us to achieve identifica-
tion using higher moments. If there are no correlated effects, for example, and
the conditional variance V(ε|x) = σ 2I, we have

V(y|x) = σ 2(I − βW )−2.

This is enough to identify β and, consequently, the remaining parameters,
even when Wi j = (N − 1)−1 if i �= j and Wii = 0. In the peer
effects literature, this result is indicated in Moffitt (2001) but is actually
reminiscent of earlier results on covariance restrictions and identification
of simultaneous equation models (see Fisher, 1966; Bekker and Pollock,
1986; Hausman, Newey, and Taylor, 1987). Below, I state it for the gen-
eral case of N individuals, and a direct demonstration is available in the
appendix.12

Proposition 2 If |β| < 1, Wi j = (N − 1)−1 if i �= j, Wii = 0, and V(ε|x) =
σ 2I then (α, β, η, γ ) is point-identified.

Interestingly, the covariance restrictions above also imply a lower bound on
the correlation among observable outcomes, which is strictly greater than the
lower bound for the pairwise correlation of a collection of equi-correlated ran-
dom variables when N ≥ 3. The reasoning for this is as follows: If a person i’s
outcome is increased and β is negative, this has a downward direct influence on
a given peer j . If a third individual k is also in the group, that person’s outcome
will also be negatively affected by the increase in i’s outcome. This negative
influence in k will, on the other hand, put upward pressure on j’s outcome
and the effect of the original increase in i’s outcome will tend to be attenu-
ated. (Of course, this indirect effect is not present if N = 2 and, accordingly,
the lower bound there is exactly −1. The bound is nontrivial when N > 2.13)
Although the restrictions contemplated here are strong (no correlated effects
and equal variance across individuals), Proposition 2 suggests that covariance
restrictions may not only be useful in identifying the parameters of interest,
but also in providing testable implications. This result is summarised below.

12 Covariance restrictions alone are not enough to identify the model without additional coefficient
restrictions. The coefficient restrictions in the present model are different from those dealt with
in the earlier works, which appear to focus on exclusion restrictions across equations.

13 When N = 3, for example, the correlation implied by Proposition 3 is −0.45. For three equi-
correlated random variables, positive definiteness of the variance–covariance matrix implies a
smaller lower bound of −0.50.
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280 Áureo de Paula

Proposition 3 If |β| < 1, Wi j = (N − 1)−1 if i �= j, Wii = 0, and V(ε|x) =
σ 2I then

C(yi , y j |x)

V(yi |x)
>

4 − 3N

4N 2 − 11N + 8
.

Since the presence of an additive common shock will tend to increase the
correlation between two observable variables, I conjecture that a similar lower
bound on correlations as in Proposition 3 is possible in that case. When cor-
related effects manifest themselves through an additive group effect (i.e., for
a group l = 1, . . . , L , the intercept is a random, possibly covariate dependent
αl ), Davezies, d’Haultfoeuille, and Fougére (2009) show that the covariance
restriction V(ε|x) = σ 2I still provides identification if there are at least two
groups of different sizes (see their Proposition 3.2). Recently, Rose (2015)
examines identifiability using second moments under the (weaker) assump-
tion that V(ε|x) = σ 2I + σεε(W + W�). There, identification is established
under conditions on W that are reminiscent of (though stronger than) the lin-
ear independence assumptions in Bramoullé, Djebbari, and Fortin (2009) (see
below).

In fact, the use of restrictions on unobservables and higher moments for
identification has been explored elsewhere in the literature for the identifica-
tion and estimation of variations of the peer effects model presented in (2)
(see Glaeser, Sacerdote, and Scheinkman, 1996 for an early example). Gra-
ham (2008), for instance, studies identification when outcomes within a group
l = 1, . . . , L are defined by

yl Nl×1 = γ̃ Wl Nl×Nl εl Nl×1 + αl1Nl×1 + εl Nl×1,

where Nl is the number of individuals in group l, Wi j,l = (Nl − 1)−1 if i �= j
and Wii,l = 0, and the group-specific intercept αl is allowed to vary across
groups.14 (A similar model is also contemplated in Glaeser, Sacerdote, and
Scheinkman, 2003.) The unobservables are separated into three components:
an individual idiosyncratic component εi,l , the average of that variable among
a person’s peers

∑
j �=i ε j,l/(Nl − 1), and a group-specific shock αl . The main
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Jayaraman (2015) demonstrate how this result can be generalized to allow for
identification of the model in (2) through higher moments (when there are no
correlated effects; see their Theorem 5).

An interesting avenue for identification appears when the (observed) social
network graph is not complete in a way that introduces enough exclusion
restrictions into the equation system (2) to restablish the (necessary and suf-
ficient) rank condition for point-identification. This insight is formalized in
Bramoullé, Djebbari, and Fortin (2009):

Proposition 4 (Bramoullé, Djebbari, and Fortin, 2009) If ηβ + γ �= 0 and
I, W, W 2 are linearly independent, (α, β, η, γ ) is point-identified.

If Wi j = (N − 1)−1 if i �= j and Wii = 0, W 2 = (N − 1)−1I +
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Figure 1 Directed Circle Network.

vertex. The matrix W 2 is such that (W 2
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much distinct from those obtained from a partition of individuals into com-
pletely connected subnetworks leading block diagonality in the subplots from
Figure 2.

The setup described up to this point presumes that researchers observe the
social structure represented by W . Whereas connections are sometimes elicited
in survey instruments (e.g., the National Longitudinal Study of Adolescent
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equivalent parameters. This and other similar results are demonstrated in detail
by de Paula, Rasul, and Souza (2015).

If � can be estimated, an estimator for (at least one element in the set
of identified) parameters of interest can be obtained (say, via indirect least
squares). Since the number of parameters (reduced or structural) is O(N 2)

though, to estimate those one would in practice need obtain at least as many
observations of (y, x) for a given social system (i.e., T N > N 2). Whereas
this is empirically conceivable when N is small, it is less plausible for even
moderately sized networks.21 Estimation can nonetheless be possible with fur-
ther, empirically credible restrictions on the system. Many social and economic
networks (though not all) tend to be sparse, for instance. The density of the pro-
duction networks examined in Atalay, Hortacsu, Roberts, and Syverson (2011)
for the United States, for example, amounts to less than 1 percent of possi-
ble links.22 Also relying on United States data, Carvalho (2014) finds an edge
density of about 3 percent.23 If one defines an undirected network from recip-
rocal friendship nominations in the AddHealth dataset, which elicits teenage
friendships, the density is about 2 percent.

This, potentially coupled with additional restrictions, opens the possibility
of application of penalization methods well suited to handle sparse models,
like the Least Absolute Shrinkage and Selection Operator (LASSO) (Tib-
shirani, 1996; see Belloni, Chernozhukov, and Hansen, 2013, for a recent
review focused on econometric applications), the Smoothly Clipped Absolute
Deviation (SCAD) penalty (Fan and Li, 2001), the Elastic Net (Zou and Hastie,
2005), or the Minimax Concave Penalty (MCP) (Zhang, 2010). If T is the
number of observed instances of (y, x)
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matrix.) This reduced form estimator (using the Elastic Net penalty function) is
applied by Bonaldi, Hortacsu, and Kastl (2014), for example, to study the evo-
lution and interconnection of banks’ cost-of-funding inferred from bank bids in
the main refinancing operation (MRO) auctions by the European Central Bank.
There, yit gives bank i’s cost of funding, and covariates xt are lagged cost-of-
funding measures for all banks in the system. The authors use the estimated
parameters to construct centrality indices for the banks in their sample. This
estimator is also pursued by Manresa (2013) in a version of the model in (2)
without endogenous effects (β = 0), in which case � = ηI + γ W (using my
notation), allowing on the other hand for time- and individual-fixed effects.24

The estimation strategy above relies on sparsity of the reduced-form coef-
ficients. Since � = ηI + γ W when β = 0 (as in Manresa, 2013), row-sum
normalization of W (as required previously) is unnecessary for identification
(one can normalize γ = 1, and the entries in each row can be heterogeneous).
In this case, given that �
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Figure 3 Sparsity of � for Directed Circle. Note: The dark lines in the first,
second, and third panels show the proportion of entries in (I − βW )−1(I + W ) that are
larger than 0.0001, 0.001 and 0.01, respectively, as a function of β. The matrix W is a
100 × 100 matrix (N = 100), such that Wii+1 = W100,1 = 1 for i = 1, . . . , 100 and
zero, otherwise. The density (proportion of nonzero entries) of W is 1 percent, and the
density of I + W , corresponding to β = 0, is 2 percent.

are not linked, will exhibit many components. A notion of approximate sparse
connectedness can then be envisioned where the (i, j) entry of W k is nonzero,
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as it provokes a relatively large number of entries in W to be zero. In this
sense, unrestricted estimation is a possibility using the LASSO or Elastic Net.
(The relaxation of positivity and row-sum normalization could be regarded as
allowing for individual heterogeneity in the magnitude and sign of β.)

The penalization of W is pursued, for example, by Lam and Souza (2013),
after dispensing with the positivity and normalization assumption on W . They
estimate the parameters of the model by minimizing an objective function writ-
ten directly in terms of the structural system. In terms of our specific model and
notation,

min(W,β,δ,γ )

1

T

∑
t

‖yt − α − βWyt − ηxt − γ Wxt‖2
2 +λ

∑
i �= j

pT (Wi j ),

(6)

where ‖ · ‖2 is the Euclidean norm and the penalty term depends on the L1
norm of W . Since y is endogenous, it is expected that additional assumptions
need to be imposed, and Lam and Souza (2013) suppose that the variance of
the structural errors εi t vanishes asymptotically (see their Assumption A2).
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to a non-convex penalization scheme (like SCAD or MCP). The analysis and
performance of this estimator are subjects of ongoing research.28

Aside from its role in estimation, sparsity of W can also be useful in identifi-
cation as it essentially imposes exclusion restrictions on the different structural
equations. Supposing enough sparsity, for example, Rose (2015) obtains iden-
tification results under additional conditions on the reduced-form coefficient
matrix �. These conditions are rank restrictions on sub-matrices of � (whose
verification is nevertheless computationally demanding). Intuitively, given two
observationally equivalent systems, sparsity guarantees the existence of pairs
that are not connected in either. Since observationally equivalent systems are
linked via the reduced-form coefficient matrix, this pair allows one to iden-
tify certain parameters in the model and, having identified those, one can then
proceed to identify other aspects of the structure. (This is related to the ideas
in Theorem 6 of Blume, Brock, Durlauf, and Jayaraman, 2015; see discussion
above.)

3.2 Nonlinearities and Multiple Equilibria

One can enumerate various empirical circumstances where a linear model
may not be ideal (see, e.g., Kline and Tamer, 2011). Nonlinearities can
occur through two possible, non-mutually exclusive, avenues: by nonlinear-
ities in the “link” function through which the (possibly weighted) aver-
age of peer outcomes determine an individual’s outcome (i.e., yi =
f
(∑N
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distributions for the potential outcomes y(x), x ∈ {0, 1}N
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which individual firm decisions may reverberate through the network (e.g.,
de Paula and Scheinkman, 2010, and Pomeranz, forthcoming).31 Again, the
insights described previously could prove useful here.

4 NETWORK FORMATION

As seen above, the connection structure among networked agents can assist
with the identification and estimation of models describing the resolution of
economic and social outcomes of interest. It is nevertheless apparent that,
whereas in some cases the peer structure can be taken as (econometrically)
exogenous or predetermined, many times the very formation of a connection
arises in response to incentives that may or may not articulate with the out-
comes to be determined using the networks as a conduit. Models of network
formation are, then, of interest on their own as well as in conjunction with the
simultaneous equation models covered in the previous section.

4.1 Statistical Models

We can posit a data-generating process summarized by the statistical model
(G, σ (G), P), where σ(G) is a σ -algebra of events in the sample space of
graphs G, and P is a class of probability distributions on the measurable space
(G, σ (G)). In the Ërdos–Rényi model defined on N vertices, for example, P
would be the parametric class of models indexed by the probability p ∈ (0, 1)

that an undirected link is independently formed between any two vertices under
consideration, defining a probability distribution over the set of 2N (N−1)/2

possible graphs on the set of N nodes. (I will focus here on undirected net-
works, though versions of many of the estimators below exist for more general
graphical structures.) A great many statistical models for network formation
can be seen as enrichments of this simple model (just as a probit or logit and
mixture versions of those can be seen as generalizations of a Bernoulli statis-
tical model). For the statistical models listed in this subsection, the analyst is
assumed to have data on at least one network (but not necessarily more than
one). (The estimation of a classical Ërdos–Rényi model with only one network
of N individuals, for instance, would essentially amount to the estimation of
Bernoulli parameter on N (N − 1)/2 observations.)

Zheng, Salganik, and Gelman (2006), for example, used a heterogeneous
version of this simple random graph model to obtain estimates for the total size
of hard-to-count populations. In the Ërdos–Rényi model above, the expected
degree for a given individual when there are N nodes equals N p, and the
proportion of total links involving individuals in group k (e.g., incarcerated
individuals) is given by Nk

))N
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a Poisson distribution with parameter pN
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carry out inference. Two main avenues are the use of variational principles
and Markov chain Monte Carlo (MCMC) methods, both rooted in statistical
mechanics.

Exploring properties of the cumulant function (e.g., convexity), one can use
variational methods to represent the constant as a solution to an optimization
problem. Consider, for instance, an Ërdos–Rényi graph on two nodes i and j .
The (random) edge between these two vertices can be written as a Bernoulli
random variable W
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It should be noted that various issues may arise in simulating ERGMs. The
procedure can be very slow to converge to an invariant distribution. This is
highlighted, for instance, in the discussion by Chandrasekhar and Jackson
(2014) and Mele (2015) and formally demonstrated in Bhamidi, Bresler, and
Sly (2011). In particular, for certain regions of the parameter space (defined as
“low temperature” regions, in analogy to spin systems in physics), where the
distribution (7) is multimodal, the mixing time for the MCMC procedure, i.e.,
the time it takes for the MCMC procedure to be within e−1 in total variation
distance from the desired distribution, is exponential on the number of nodes
(Theorem 6 in that paper). In other regions (“high temperature” ones), where
the distribution (7) is unimodal, the mixing time is O(n2 ln n) (Theorem 5 in
that article).

One recurrent related issue in the application of ERGMs is what the lit-
erature terms degeneracy or near degeneracy, whereby “depending on the
parameter values, the exponential random graph distribution can have a
bimodal shape in the sense that most of the probability mass is distributed
over two clearly separated subsets of the set of all digraphs, one subset con-
taining only low-density and the other subset containing only high-density
digraphs. The separation between these two subsets can be so extreme that
[. . . ] stochastic updating steps which change only a small number of arc vari-
ables [. . . ] have a negligible probability of taking the Markov process from
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stark “discontinuities” in the distribution of graphs generated by the model as
parameters are varied are also investigated in Chatterjee and Diaconis (2013)
for dense, large networks. They also discuss the (troublesome) issue that for
certain regions of the parameter space – the “high temperature” ones, where
the distribution (7) is unimodal, graph draws from the model are very close
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form independently with probability given by exp
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graphs, but their analysis can also be extended to directed ones.) A possi-
ble narrative for this specification could be that the establishment of certain
connections only requires dyads (e.g., a tennis match), whereas others elicit
participation from triples (e.g., a proper rock’n’roll band). One version of
their model has subgraphs form at random and produce a graph realization
defined by the union of edges formed by the initial subgraph draws. Note
that some edges drawn in the initial protocol will be redundant. The edge
{i, j} from the first class of subgraphs may form independently as well as
part of a triangle, say {i, j, k}, with probability p1 × pt : two bandmates in
a trio may also be tennis partners. (Chandrasekhar and Jackson, 2014, also
consider a protocol where subgraphs are formed sequentially, avoiding redun-
dancies.) Furthermore, realized isolated edges, triangles, and more generally
modeled subgraphs can possibly get “meshed” in the final observed network.
For instance, a triangle involving nodes i , j and k could be the outcome of inde-
pendently formed edges {i, j}, { j, k}, and {k, i} (which occurs with probability
p3

1), a genuine triangle {i, j, k} (happening with probability pt ), or a combi-
nation of independent edges and triangles involving those nodes (and possibly
others). Disentangling the count of subgraphs in the model that are genuinely
formed or just happenstance from the composition of other subgraphs can be
done by noting that the count of each subgraph (Gl)

K
l

j
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where Ni (g) denotes the set of nodes directly connected to node i and | · |
is the cardinality of a given set. The vector εi ≡ (εi j ) j �=i enumerates link-
specific payoff shifters. I also retain the notation of using Wi j ∈ {0, 1} to
denote the establishment of a link from i to j
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shows that the meeting protocol and myopic best response dynamic form an
ergodic Markov chain on the space of networks and converges to a unique
invariant distribution (with modes at the maximands of the potential function
alluded to above). In fact, when the unobservables are assumed to be i.i.d.
extreme value distributed, the limiting distribution corresponds to that of an
ERGM.37 Given the practical difficulties in the estimation of ERGMs pointed
out previously, I should mention that Mele (2015) also proposes a modified
MCMC procedure and analyzes the procedure for this particular model along
the lines of Bhamidi, Bresler, and Sly (2011), demonstrating that the slow con-
vergence regions in the parameter space are relatively small for parsimonious
parameterizations of the utility function where only direct links matter (see
Mele, 2015 for further details). Intuitively, the most parsimonious parameteri-
zation of an ERGM would correspond to an Ërdos–Rényi model, for which the
parameter space would be in the “high temperature” regime.

All three models above are fit to a network of friendships obtained from
the AddHealth data and use MCMC methods to produce Bayesian estimates
of the parameters of interest. Whereas Christakis, Fowler, Imbens, and Kalia-
naraman (2010) use data from one school network, Mele (2015) estimates
his model on three school networks, and Badev (2013) uses data from 14
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a subgraph to any pairwise stable network (which would exclude the triangle
where {23}
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pairwise network will then be represented by a continuous graph with bounded
degrees (since nodes have a finite number of incident edges), corresponding to
a sparse network (see previous discussion about the empirical plausibility of
such social and economic graphs). Such mathematical objects, called graph-
ings in the applied mathematics literature, are sometimes used to approximate
large networks as limits for large discrete graphs under a well-defined con-
vergence metric (e.g., Lovasz, 2012 for a recent survey).40 To further reduce
the dimensionality of the problem, they also assume that unobservable taste
shocks depend only on the covariates of putative connections and not on their
identity. If covariates have a finite support, individual nodes can be classified
into a finite (albeit possibly large) number of “network types,” which provide
a description of an individual node’s local network. In the example introduced
above, for instance, if 1, 2, and 3 stand for possible characteristics of a node
(from a continuum of vertices) and individuals can only establish one connec-
tion, a given individual node would have three unobservable taste shocks: one
for each one of the possible neighbour covariates. (The payoff to being isolated
is normalized to zero.) In this example, a network type would describe the char-
acteristic of a node (1,
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multi-step estimation strategy where equilibrium beliefs are estimated at a first
step from linking decisions and used in the estimation of payoffs in a second
stage. The first step is made possible because private information is indepen-
dent across agents, and beliefs about other agents’ linking decision do not
depend on one’s private information. Analogous multi-stage conditional choice
probability-based strategies have been employed in the dynamic program-
ming discrete choice and empirical games literature under similar assumptions
(e.g., de Paula, 2013), and Gilleskie and Zhang (2009) use a related frame-
work, so only direct neighbors enter the utility function. Their main goal is to
empirically study peer effects in smoking behavior (as in Badev, 2013) while
allowing for links to be formed purposefully by the agents involved. As in
previous studies, they employed the AddHealth data in their analysis. Leung
(2015b) offers a related estimator focusing on the network formation. Here,
though, the payoff structure involves the usual graph theoretic configurations
as in (9), and the statistical analysis is performed for a small number of large
networks instead of a large number of small games (as in Bisin, Moro, and
Topa, 2011 and Menzel, 2015). An empirical illustration using microfinance-
related data from Banerjee, Chandrasekhar, Duflo, and Jackson (2014
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network. Whereas some strategies do not require observation of the whole net-
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In both cases, most models examined are static. Dynamic, forward-looking
models may be adequate for many applications (e.g., industrial organization
and banking), especially as more detailed and abundant data on the evolution
of networks and outcomes becomes available.

A PROOFS

A.1 Proof of Proposition 2

If V(ε|x) = σ 2I, then V(y|x) = σ 2(I − βW )−2. Since |β| < 1 and W is
(row-)stochastic, we obtain

(I − βW )−1 = I + βW + β2W 2 + . . .

It can be verified that W k, k = 1, 2, . . . is symmetric with diagonal elements
(W k)i i = ak−1 and off-diagonal entries (W k)i j = ak, i �= j , where

a0 = 0,
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Using then the fact that V(y|x) = σ 2(I + S)2, the ratio between covariance
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On the other hand, the quadratic coefficient in p(b; κ, N ) is positive if, and
only if,

κ >
−(N − 2)

(N − 2)2 +ä

�

(
κ >

�
Š

( N Š

)

(
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for the group with three individuals. Then,

ψ(β) = C(yi,1, y j,1|x1)

C(yi,2, y j,2|x1)
= 8 + 8β + 2β2

4 + 7β + 2β2 − β3
.

It can be checked that ψ ′(β) < 0 for |β| < 1 and consequently ψ(β) >

ψ(1) = 1.5.
Let ψ be the observed covariance ratio among outcome variables. The

parameter β is then a solution to a cubic equation q(b; ψ) = 0 obtained from
the expression above, where q(b; ψ) ≡ −ψβ3 + 2(ψ − 1)β2 + (7ψ − 8)β +
4(ψ − 2). To show that only one root to this equation is below 1 in absolute
value, I make use of Rouché’s theorem (see Rudin, 1987, pp. 225 and 229).
The result is stated for general complex-valued functions. In our context, it
establishes that, if the functions f and g are continuous on a compact set C
and differentiable on its interior with |g(x)| < | f (x)| on the boundary of C ,
then f and f + g have the same number of zeros in the interior of C , where
each zero is counted as many times as its multiplicity. Taking f (x) = a1x (so
that f (x) = 0 ⇒ x = 0) and g(x) = a0+a2x2+· · ·+aK x K and
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(iii) Three networks with two links (g = {i j,
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