where ($$ / $$) $_0$ is the peak event rate at the start of the final acceleration at time $$

numerical results from the bulk shear model if γ^{\ast} is reinterpreted as

$$\gamma^* = \begin{bmatrix} 2/ & (1-) & (\nu) \end{bmatrix} \begin{bmatrix} \rho & \rho \end{bmatrix}$$
 (5)

where is now the critical stress in tension.

4. Critical Strain for Bulk Failure

[11] Equations (3) and (5) imply that γ^* is the ratio, per unit volume, of the energy for tensile failure [$^2/$ (1 -) (ν)] to a rock's internal energy (/ 1). This interpretation, however, does not explain why γ^* should show a restricted range of values. From classical thermodynamics [17 , 1992], atoms in solids have an average potential energy, associated with elastic deformation, of (1/2)(/ 1) for each of their three components of motion. Because the strain at failure, ϵ , can be defined as the ratio, per unit volume, of [Strain Energy for Fracture] to [Initial Potential Energy], it follows that ϵ = (2/ bendiation,

g* i tusr Tes